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1. Introduction

It is straightforward to construct uncharged black strings and branes in Einstein gravity.

Starting from a Schwarzschild black hole in D -dimensions, for example, one obtains a

black string in (D + 1)-dimensions simply by adding a flat direction to the metric. Despite

the seemingly trivial nature of this construction, the phenomenology associated with black

strings, begining with the Gregory-Laflamme instability [1] , has turned out to be surpris-

ingly rich (see reference [2] for a review). One can similarly construct black p-branes by

adding additional flat directions, while rotating black branes can be obtained by adding

flat directions to the D-dimensional Myers-Perry metrics [3].

Lovelock gravity theories [4] are fascinating extensions of general relativity that include

higher curvature interactions. The Lagrangian density for Lovelock gravity in D spacetime

dimensions can be written L =
∑[d/2]

k=0 ckLk, where

Lk =
1

2k

√−g δa1...akb1...bk

c1...ckd1...dk
Ra1b1

c1d1 . . . Rakbk

ckdk , (1.1)

and L0 =
√−g. The δ symbol above denotes the totally antisymmetric product of 2k

Kronecker deltas, normalized to take values 0 and ±1. The term L0 gives the cosmological

term in the action, while L1 =
√−gR gives the Einstein term. The curvature squared

term, known as the Gauss-Bonnet term, may be expanded to give L2 =
√−g(RabcdR

abcd −
4RabR

ab +R2). In D = 4 this term can be written as a divergence and does not contribute

to the equations of motion. Similarly the term Lk is the Euler density in D = 2k and hence

contributes to the equations of motion only for dimensions D > 2k. Lovelock theories are

distinguished, among the much larger class of general higher curvature theories, by having

field equations involving not more than second derivatives of the metric. Consequently,

Lovelock gravity theories are free from many of the pathologies that plague general higher

derivative gravity theories.
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The black hole solutions of Lovelock gravity have been been studied begining with

the work of [5 – 7] some 20 years ago. One would also like to know the black string and

black brane solutions, e.g. in order to study the effects of higher curvature interactions

on black string phenomenology. A number of workers have tried to find such solutions.

However, one immediately encounters the fact that adding flat directions does not work

in the general Lovelock theory. This was noted for Gauss-Bonnet gravity in reference

[8]. Thus far, analytic solutions for black branes in general Lovelock theories have not

been found, and workers have turned to other methods. In particular, black strings in

5-dimensional Gauss-Bonnet gravity were studied numerically in reference [9] and more

general black branes in this theory were studied via near horizon and far field expansions

in reference [10].

In this paper, we show that black brane solutions to Lovelock gravity theories including

higher curvature terms may, in fact, be simply constructed, but only within a certain class

of Lovelock theories. This class of theories has the following property. Assume that Lp is

the highest order term in the Lagrangian, i.e. that the coefficients ck vanish for k > p.

Depending on the values of the nonzero coefficients in the Lagrangian, it then turns out

that the theory may have up to p distinct constant curvature vacuum solutions [5][6][7].

The different values that the constant curvature may take are the roots of a pth order

polynomial. There will, of course, generally be p roots, but only real values of the curvature

are considered to be physical. The coefficients in the Lovelock Lagrangian may be tuned

such that there are p real roots and that all these roots coincide. The theory then has

a (locally) unique constant curvature vacuum solution. We will refer to these as LUV

theories - standing for Lovelock-Unique-Vacuum. We show that LUV theories have simple

black brane solutions.

The simplest LUV theory with non-trivial dynamics is Einstein gravity with a cosmo-

logical constant Λ, and our results on brane solutions will be, roughly, that what works in

this theory works in all LUV theories. We can first consider Einstein gravity with Λ = 0.

In this case, as described above, brane solutions are simply obtained by adding flat direc-

tions. Our first result will be that adding flat directions also works in LUV theories, in the

limit that the curvature of the vacuum has been tuned to zero. Taking this limit of a LUV

theory with highest order interaction Lp sends the coefficients of all the lower order terms

to zero and we have simply L = Lp. We will call these pure Lovelock gravity theories, with

pure Einstein gravity as the first non-trivial example.

If we now consider Einstein gravity with Λ 6= 0, additional directions may still be

added, but they are no longer flat, i.e. the new metric must have nontrivial coordinate

dependence on the new direction. A good example of this is the AdS black string of

reference [11], which is given by

ds2 =
l2

z2

(

dz2 − (1 − 2m

r
)dt2 +

dr2

(1 − 2m
r )

+ r2dΩ2

)

(1.2)

where l is the radius of curvature of 5-dimensional AdS. This differs from the black string

of pure Einstein gravity in the overall conformal rescaling by the function l2/z2 of the

new coordinate z. Note also that the 4-dimensional ‘seed’ metric for the construction,
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the Schwarzschild metric in this case, is a solution to Einstein gravity with vanishing

cosmological constant. More generally the 4-dimensional Schwarzschild metric in (1.2) may

be replaced by any Ricci flat metric. We will show below that in LUV theories with nonzero

vacuum curvature, new directions may be added in a similar way. The metric will generally

be conformally scaled by a function of the new coordinate. The lower dimensional seed

metric can be a solution to a LUV theory with a different value of the vacuum curvature,

possibly zero as in the metric (1.2) above.

LUV theories and their black hole solutions have been extensively discussed in ref-

erence [12]. It is argued there that LUV theories have a number of nice properties that

distinguish them as possiby the most physically relevant Lovelock theories. We note [12]

that in odd dimensions D = 2p + 1 the LUV theory with highest term Lp, which is the

highest non-trivial term, corresponds to Chern-Simons gravity1, while in even dimensions

the LUV theory that includes the highest non-trivial interaction follows from a Born-Infeld

type action.

2. LUV theories

In this section we recount some useful results in Lovelock gravity, focusing in particular

on the LUV theories. The equations of motion following from the Lovelock Lagrangian

L =
∑r

k=0 ckLk, with r ≤ [d/2] have the form Gab = 0 where

Ga
b =

r
∑

k=0

ck δac1...ckd1...dk

be1...ekf1...fk
Re1f1

c1d1
. . . Rekfk

ckdk
. (2.1)

For the purposes of studying LUV theories, it is also useful to write Gab in an alternative

form which we will make use of below,

Ga
b = α0 δac1...crd1...dr

be1...erf1...fr

(

Rc1d1
e1f1 + α1δ

e1f1

c1d1

)

· · ·
(

Rcrdr

erfr + αrδ
erfr

crdr

)

. (2.2)

The original form of the equations of motion can then be recovered through repeated

applications of the identity

δ
a1...ap

b1...bp
δ
bp−1bp
ap−1ap = 2(D − (p − 1))(D − (p − 2))δ

a1 ...ap−2

b1...bp−2
(2.3)

The coefficients ck are given by sums of products of the parameters αk in (2.2). The precise

relation is given in reference [12]. Inverting this relation to get the αk’s in terms of the ck’s

requires solving a polynomial equation of order r. Hence the αk’s are generally complex

parameters.

For our purposes, it is convenient to take the parameters αk with k = 0, 1, . . . , r to be

real valued and regard the coefficients ck in the Lagrangian to be determined by them. It is

then clear from the expression (2.2) for Gab that if the parameters αk with k = 1, . . . , r are

all distinct, then the theory will have r distinct constant curvature solutions, with Riemann

tensors given respectively by

Rab
cd = −αkδ

cd
ab , k = 1, . . . , r (2.4)

1Further properties of these theories are discussed in references [13][14].
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The LUV theories discussed above result from setting all the parameters αk with k = 1, . . . r

equal to a common value α. There is then, at least locally, a unique constant curvature

vacuum. If we further set α = 0, we get a pure Lovelock theory with Lagrangian L = α0Lr,

which has flat spacetime as its unique constant curvature vacuum.

The static, spherically symmetric solutions to Lovelock gravity in D-dimensions can

be written in the form

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

n (2.5)

where n = D − 2. The equations of motion in the form (2.3) resemble an rth order

polynomial equation of order. It is then not surprising that the metric function f(r)

involves solving an rth order algebraic equation [5 – 7] (see also [15] for a detailed analysis

of the general case). We will examine the solutions in Gauss-Bonnet gravity, in which r = 2,

in some detail. In this case the solutions for the metric function f(r) has two branches,

given by

f±(r) = 1 − r2

2

(

−(α1 + α2) ±
√

(α1 − α2)2 +
4

r4
0

(r0

r

)D−1
)

. (2.6)

As r tends to infinity the branches f+ and f− approach constant curvature metrics with

curvatures −α2 and −α1 respectively. If we take α2 = 0, then the solutions in the f+

brance are asymptotically flat. Keeping the leading order correction to the flat metric in

this case, we have as r tends to infinity

f+ ' 1 − 1

α1r2
0

(r0

r

)D−3
. (2.7)

This is the correct fall-off for a black hole of finite ADM mass in D-dimensions. However,

the metric differs from the Schwarzschild metric at smaller scales.

We can take the LUV limit of the Gauss-Bonnet theory by setting α1 = α2 = ε/l2, with

ε = ±1. The expressions for the metric functions simplify considerably in this limit [12]

to be

f±(r) = 1 + ε
r2

l2
∓

(r0

r

)

(D−5)
2

(2.8)

For D > 5, the branch f+ then gives black holes in (anti-)deSitter, while the branch f− gives

naked singularities. In each case, the falloff to the vacuum is slower than in Schwarzschild-

(A)dS, and the ADM mass would therefore be infinite. However, it was shown in [16][12]

that an appropriate definition of the mass in LUV theories gives a finite result.

One can further take the limit l → ∞ to get pure Gauss-Bonnet theory. We then have

simply

f±(r) = 1 ∓ |C|
r

(D−5)
2

. (2.9)

For D > 5 the two branches again yield either black holes, or naked curvature singularities.

The case D = 5, however, is particularly interesting. In this case the metric function is

simply a constant. Rescaling the time and radial coordinates, the metric can be written as

ds2 = −dt̃2 + dr̃2 + α2r̃2dΩ2
3. (2.10)
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where α < 1 for the f+ corresponding to 3-spheres with missing solid angle, while α > 1

for f− corresponding to an excess of solid angle. In both cases there is a conical singu-

larity at the origin. Other solutions to Lovelock theory with conical singularities at the

origin (but with a different geometry in the constant (r, t) section were obtained recently

[17].

Note that D = 5 is the lowest dimension for which the Gauss-Bonnet term is dy-

namically relevant. The situation is similar [12] for all pure Lovelock theories, L = Lp, in

dimension D = 2p+1. The static, spherically symmetric solutions have spheres S2p−1 with

missing (or excess) solid angle. The first example with p = 1, i.e. pure Einstein gravity,

in D = 3 is a familiar one. Mass in this theory corresponds to point conical defects in an

otherwise flat spacetime. In the general case spacetime is not flat, but satisfies the pure

Lovelock field equations.

3. Black strings and branes in LUV theories

In pure Einstein gravity, we know that we can construct black brane solutions by adding

flat directions to any black hole solution. More precisely, if we have a spacetime metric ĝµν

that solves the vacuum Einstein equations in D-dimensions, then the metric

ds2 = dz2 + ĝµνdxµdxν (3.1)

solves the vacuum field equations in D + 1 dimensions. If ĝµν is the metric for a black

hole with horizon topology Σ, then the new metric is a black string with horizon topology

Σ × R1. The procedure can be iterated to generate black branes with any number of flat

spatial dimensions tanget to the horizon.

It is straightforward to check that this simple construction does not work in general

Lovelock theories. In fact, it fails already in Einstein gravity with a nonzero cosmological

constant. Consider Einstein’s equations Rab− 1
2gabR+Λgab = 0 for the (D+1)-dimensional

metric (3.1). Assume that ĝµν satisfies these same equations. Note that all components

of the Riemann tensor of the metric (3.1) with one, or more, z indices necessarily van-

ish. In particular, this implies that Rµν = R̂µν and R = R̂ where the hatted quantities

are those computed from ĝµν . The µν components of the field equations are then iden-

tical to those for ĝµν which are satisfied by assumption. The zz component of the field

equations, however, requires 1
2 R̂ − Λ = 0, which conflicts with the trace of the lower di-

mensional field equations which implies 2−D
2 R̂ + DΛ = 0. We then conclude that the

(D + 1)-dimensional metric (3.1) satisfies the field equations only for Λ = 0, pure Einstein

gravity.

Our first new result is to observe that, while adding flat directions does not generally

work in Lovelock gravity, it does work in all pure Lovelock theories, with Lagrangians

L = Lp. The result above for pure Einstein gravity can then be seen as the particular case

p = 1 of this more general statement. If ĝµν solves the field equations of the pure Lovelock

theory in D-dimensions, then the metric (3.1) solves the pure Lovelock field equations in

D+1 dimensions. This is easily seen from the field equations (2.1), with only cp nonzero, in

– 5 –
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the following way. Note that as before all the components of the Riemann curvature tensor

with one, or more, z indices necessarilly vanish. The field equations Gµ
ν = 0 are then

again identical to the D-dimensional field equation Ĝµ
ν = 0 for ĝµν and hence are satisfied

by assumption. The equation Gz
z = 0 is given by the trace Ĝµ

µ and hence also vanishes.

Note that, as in the pure Einstein case, the trace of the pure Lovelock field equations for

L = Lp is equal to Lp/
√
−ĝ times a constant.

This result leads to some intriguing possibilities. In pure Einstein theory, flat directions

can be added to the point-like conical defects of D = 3 gravity to get cosmic strings in

D = 4 and branes in higher dimensions, which are surrounded by circles with deficit

(surfeit) angle. These defects play important roles in, for example, the Weyl solutions and,

in particular, in the C-metric. There is great interest in higher dimensional generalizations

of these spacetimes (see e.g. [18, 19]). If we take the case of the pure Gauss-Bonnet gravity,

L2, then in D = 5 we D = 5 a static, spherically symmetric solution with missing (excess)

angle on an S3. If we add one flat direction, we get a string in D = 6 surrounded by

an S3 with missing (excess) solid angle. It is tempting to think that this string might

serve as a starting point for finding analogues of the Weyl solutions or the C-metric in

D = 6.

The next step is to attempt to find a construction of black strings and branes that

allows us to add back in the lower order terms in the Lovelock Lagrangian. Here, we are

able to make some partial progress by again taing results from Einstein gravity as a guide.

If one considers Einstein gravity with a negative cosmological constant Λ = −1/l2, then

we know that if a metric ĝµν in D dimensions is Ricci-flat, then the metric

ds2 =
l2

z2
(dz2 + ĝµνdxµdxν) (3.2)

solves the field equations in D + 1 dimensions (see e.g. [11]). If we try this in Lovelock

theory, we find the following result. If ĝµν solves the field equations of pure D-dimensional

Lovelock gravity with Lagrangian Lp, then the metric (3.2) solves the field equations of

the (D + 1)-dimensional LUV theory, also with the highest interaction term Lp, but with

α = 1/l2.

To keep the formulas manageable, we will focus on the case p = 2 of Gauss-Bonnet

gravity. We then indicate how the proof straightforwardly generalizes to higher order LUV

theories. Our D-dimensional spacetime ĝµν is then assumed to satisfy the equations of

motion of pure Gauss-Bonnet gravity

0 = δµρ1...ρ4
νσ1...σ4

R̂ρ1ρ2
σ1σ2R̂ρ3ρ4

σ3σ4 (3.3)

where R̂µνρ
σ is the Riemann tensor of ĝµν . If we let gab denote the metric in (3.2) then its

nonzero curvature components are given by

Rµz
νz = − 1

l2
δν
µ Rµν

ρσ =
z2

l2
R̂µν

ρσ − 1

l2
δρσ
µν (3.4)

– 6 –
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The field equations of the LUV theory are given by Ga
b = 0. After plugging in the curvature

components (3.4) the Gz
z component of the field equations becomes

0 = δρ1...ρ4
σ1...σ4

(

z2

l2
R̂ρ1ρ2

σ1σ2 +

(

α − 1

l2

)

δσ1σ2
ρ1ρ2

)(

z2

l2
R̂ρ3ρ4

σ3σ4 +

(

α − 1

l2

)

δσ3σ4
ρ3ρ4

)

. (3.5)

Having made the choice α = 1/l2, we see that this is simply proportional to the trace of the

equations of motion (3.3) for ĝµν . Plugging into the Gµ
ν components of the field equations

gives

0 = δµρ1...ρ4
νσ1...σ4

(

z2

l2
R̂ρ1ρ2

σ1σ2 +

(

α − 1

l2

)

δσ1σ2
ρ1ρ2

)(

z2

l2
R̂ρ3ρ4

σ3σ4 +

(

α − 1

l2

)

δσ3σ4
ρ3ρ4

)

(3.6)

+8δµρ1...ρ3
νσ1...σ3

((

α − 1

l2

)

δσ1
ρ1

)(

z2

l2
R̂ρ2ρ3

σ2σ3 +

(

α − 1

l2

)

δσ2σ3
ρ2ρ3

)

For α = 1/l2 the first term again reduces to the D-dimensional equations of motion for

ĝµν , while the second term simply vanishes. The equations Gz
µ = 0 are trivially satisfied,

and we have thus shown that adding the construction (3.2) of new solutions holds for LUV

theories of maximum order p = 2 starting with solutions of pure Gauss-Bonnet theory.

This derivation may be straightforwardly extended to higher order LUV theories as

well. Rather than present the more lengthy equations that arise in the general case, we

will sketch in words how the equations above for the second order case are generalized in

the higher order case. Specifically, take the seed metric ĝµν in (3.2) to be a solution of the

Lovelock theory with L = Lp and consider the field equations Ga
b = 0 of the pth order LUV

theory with α = 1/l2. The equation Gz
z = 0 will closely resemble equation (3.5), but with

p of the factors in parenthesis on the right hand side, rather than 2. Setting α = 1/l2 then

gives a multiple (z2/l2)p of the trace of the pure Lovelock field equations, which vanish

by assumption. The components Gµ
ν of the field equations will have a form similar to

equation (3.6). In this case, there will be p of the curvature factors in parenthesis on the

first line of (3.6), while the term on the second line will have a single factor of the form

(α − 1
l2

)δρ
σ and p − 1 factors involving the curvature of the seed metric. The first line will

again be proportional to the pure Lovelock field equations for the seed metric ĝµν , while

the second line will again vanish upon setting α = 1/l2. The components Gz
µ will again

vanish identically. This then establishes the result for general LUV theories.

We now prove a related, but more general result as well. Assume now that the D-

dimensional metric ĝµν solves the equations of motion of LUV theory with maximum

interaction L2 and curvature parameter β,

0 = δµρ1...ρ4
νσ1...σ4

(

R̂ρ1ρ2
σ1σ2 + βδσ1σ2

ρ1ρ2

) (

R̂ρ3ρ4
σ3σ4 + βδσ3σ4

ρ3ρ4

)

. (3.7)

Now consider a (D + 1)-dimensional metric of the form

ds2 =
1

f(z)2
(dz2 + ĝµνdxµdxν) (3.8)

and ask if it can solve the field equations of the same LUV theory, but with vacuum

curvature parameter α instead. Our previous result corresponds to the special case that the

curvature parameter of the D-dimensional metric vanishes. The curvature of the (D + 1)-

– 7 –
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dimensional metric (3.8) is given by

Rµz
νz = (f∂2

zf − (∂zf)2)δν
µ Rµν

ρσ = f2R̂µν
ρσ − (∂zf)2δρσ

µν (3.9)

The field equations for the (D + 1)-dimensional metric (3.8) are again given by Ga
b = 0.

Upon plugging in the components of the Riemann tensor, the equation Gz
z = 0 becomes

0 = δρ1...ρ4
σ1...σ4

(

f2R̂ρ1ρ2
σ1σ2 + (α − (∂zf)2)δσ1σ2

ρ1ρ2

)(

f2R̂ρ3ρ4
σ3σ4 + (α − (∂zf)2)δσ3σ4

ρ3ρ4

)

. (3.10)

This will be proportional to the trace of the field equations (3.7) for the D-dimensional

metric ĝµν if the function f(z) satisfies the relation

α − (∂zf)2 = βf2 (3.11)

Plugging in the components of the Riemann tensor into the equations Gµ
ν = 0 gives the

equation

0 = δµρ1...ρ4
νσ1...σ4

(

f2R̂ρ1ρ2
σ1σ2 + (α − (∂zf)2)δσ1σ2

ρ1ρ2

)(

f2R̂ρ3ρ4
σ3σ4 + (α − (∂zf)2)δσ3σ4

ρ3ρ4

)

(3.12)

+8δµρ1...ρ3
νσ1...σ3

(

(α − (∂zf)2 + f∂2
zf)δσ1

ρ1

)

(

f2R̂ρ2ρ3
σ2σ3 + (α − (∂zf)2)δσ2σ3

ρ2ρ3

)

The first of terms will vanish by virtue of the equations of motion (3.7) for the D-

dimensional metric ĝµν if the relation (3.11) is satisfied. The second term will vanish,

if the function f(x) also satisfies the additional relation

α − (∂zf)2 + f∂2
zf = 0. (3.13)

If we write the D and (D +1)-dimensional curvature parameters as β = 1/l′2 and α = 1/l2

respectively, then both relations are satisfied if the conformal factor f(z) in the (D + 1)-

dimensional metric (3.2) is taken to be

f(z) =
l′

l
sin(z/l′). (3.14)

Note that we can take the l′ → ∞ limit of this result in which the curvature parameter

β = 1/l′2 of the D-dimensional metric vanishes. Our previous result for this case, that

f(z) = z/l, is then seen as the small angle approximation to the more general result above.

We also note that, for the sake of definiteness, we have focused on LUV theories with AdS

vacua. However, the above result is only simply modified for LUV theories with deSitter

vacua. If we take α = −1/l2 and β = −1/l′2 then we find that the conformal scaling

function f(z) must be given by

f =
l′

l
sinh(z/l′). (3.15)

Finally, although we have again focused on LUV theories of order p = 2, these results hold

also for LUV theories of higher order. The extension of the forms of equations (3.10) and

(3.12) to higher order theories follows the discussion given above, with the result that the

function f(z) must again satisfy equations (3.11) and (3.13).
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4. Concluding remarks

We have shown that the construction of black string and brane solutions in pure Lovelock

gravity theories and in LUV theories parallels the simple constructions in pure Einstein

theory and in Einstein theory with a nonzero cosmological constant respectively. While

this does not fully solve the problem of constructing black brane solutions in Lovelock

gravity theories, it represents useful progress in a number of ways.

On one hand, it has been argued in reference [12] that LUV theories represent the

most physically interesting class of Lovelock gravity theories. From this perspective, our

results cover precisely this most interesting case. Further, the simplicity of our results,

and their parallels with Einstein gravity, suggest that there may well be other methods of

constructing solutions in Einstein gravity that have simple generalizations to pure Lovelock

and LUV theories. In particular, as we commented above, the appearance of string solutions

with deficit solid angle on odd dimensional spheres, suggests that we might be able to find

analogues of the Weyl solutions and the C-metric in certain of these theories.

On the other hand, one’s primary interest may be in corrections to solutions to pure

Einstein gravity due to higher curvature Lovelock terms. In this case, our results are

limited, but provide some clues towards finding black string and brane solutions in the

general case. Consider the black hole solutions of Gauss-Bonnet gravity which have the

form (2.5) with the metric function f(z) given in equation (2.6). Take α2 = 0, so that

we have an asymptotically flat solution. For large r this approaches Schwarzschild as

in equation (2.7). As r → 0, however, where the curvature becomes large, the solution

matches onto a solution to pure Gauss-Bonnet gravity. If we want to construct a black

string solution, in this case, it should asymptote for large r to Schwarzschild with an extra

flat direction, the black string of pure Einstein gravity. Our results suggest that it should

also look simple at small radii. There it should approach the pure Gauss-Bonnet limit of

(2.6) again with a flat direction added. For intermediate radii, the solution will presumably

depend on the coordinate along the string in a non-trivial way.

Note added: we would like to draw the readers attention to reference [20], which ap-

peared very shortly after the original version of this paper and presents an alternate route

to many of the same results. In addition, the authors of [20] note that interesting exotic

black brane solutions may be constructed in pure Gauss-Bonnet theory (and very simi-

larly in higher order pure Lovelock theories) by adding flat directions to any 4-dimensional

metric having vanishing Euler density.
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